COMPUTATIONAL
NEUROSCIENCE

Papers


Page Contents


Full Text


Selected papers on modeling methods and tools that may be of general interest to computational neurobiologists.


Bakker, R., Wachtler, T. and Diesmann, M. (2012) CoCoMac 2.0 and the future of tract-tracing databases. Frontiers in Neuroinformatics, Epub 27 Dec. 2012, doi: 10.3389/fninf.2012.00030.

Bedard, C., Kroger, H., and Destexhe, A. (2004) Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal, 86, 1829-1842.

Beeman, D., Bower, J.M., De Schutter, E., Efthimiadis, E.N., Goddard, N., & Leigh, J. (1997) The GENESIS simulator-based neuronal database. In: Koslow, S.H. and Huerta, M.F. (Eds.) Neuroinformatics: An Overview of the Human Brain Project. Mahwah NJ: Lawrence Erlbaum Associates, pp. 57-81.

[PDF] Blackwell K.T. and Hellgren Kotaleski J. (2003) Modeling the dynamics of second messenger pathways. In: Kotter, R. (Ed.) Neuroscience Databases: A Practical Guide. Norwell, MA: Kluwer Academic Publishers.

Cannon, R.C., and D'Alessandro, G. (2007) The Ion Channel Inverse Problem: CurrentNeuroinformatics Meets Biophysics. PLoS Computational Biology, 2(8):e91.

[PDF] Cannon, R.C., Gewaltig, M., Gleeson, P., Bhalla, U., Cornelis, H., Hines, M., Howell, F., Muller, E., Stiles, J., Wils, S., and De Schutter, E. (2007) Interoperability of Neuroscience Modeling Software: Current Status and Future Directions. Neuroinformatics, 5

Carnevale, N.T., Tsai, K.Y., Claiborne, B.J., and Brown, T.H. (1995) The electrotonic transformation: a tool for relating neuronal form to function. In: Tesauro, G., Touretzky, D.S., and Leen, T.K. (Eds.) Advances in Neural Information Processing Systems, Vol. 7, Cambridge, MA: MIT Press, pp. 69-76.

Cornelis, H., Coop, A.D., and Bower, J.M. (2012) A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture. PLoS ONE, 7(1): e28956. doi:10.1371/journal.pone.0028956.

Cornelis, H., Rodriguez, A.L., Coop, A.D., Bower, J.M. (2012) Python as a Federation Tool for GENESIS 3.0. PLoS ONE, 7(1): e29018. doi:10.1371/journal.pone.0029018.

[PDF] Cornelis, Hugo and De Schutter, Eric (2003) NeuroSpaces: separating modeling and simulation. Neurocomputing, 52-54, 227-231.

Crook, S., Beeman, D., Gleeson, P., and Howell, F. (2005) XML for Model Specification in Neuroscience: An Introduction and Workshop Summary. Brains, Minds & Media. 1, bmm228 (urn:nbn:de:0009-3-2282).

Davison, A.P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D. Perrinet, L. and Yger, P. (2009) PyNN: a common interface for neuronal network simulators. Frontiers in Neuroinformatics, 2:11. doi:10.3389/neuro.11.011.2008.

De Schutter, Eric (1992) A consumer guide to neuronal modeling software. Trends in Neuroscience, 15, 462-464.

Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195-230.

[PDF] Diesmann, Markus and Gewaltig, Marc-Oliver (2002) NEST: An Environment for Neural Systems Simulations. Ges. für Wiss. Datenverarbeitung , Forschung und wisschenschaftliches Rechnen, 58, 43-70.

Eichler-West, Rogene M., De Schutter, E., & Wilcox, G.L. (1999) Using evolutionary algorithms to search for control parameters in a nonlinear partial differential equation. In Evolutionary Algorithms, Vol. 111 of the IMA Volumes in Mathematics and its Applications, Springer-Verlag, 33-64 (1999).

Eppler, J.M., Helias, M., Muller, E., Diesmann, M. and Gewaltig, M-O. (2009) PyNEST: A convenient interface to the NEST simulator. Frontiers in Neuroinformatics, 2:12. doi: 10.3389/neuro.11.012.2008.

Galan, R.F., Ermentrout, G.B., and Urban, N.N. (2005) Efficient Estimation of Phase-Resetting Curves in Real Neurons and its Significance for Neural-Network Modeling. Physical Review Letters, 94, 158101.

Gewaltig, M. and Cannon, R.C. (2014) Current Practice in Software Development for Computational Neuroscience and How to Improve It PLOS Computational Biology, 10(1):e1003376. doi: 10.1371/journal.pcbi.1003376. Epub 2014 Jan 23.

Gleeson, P., Steuber, V., and Silver, R.A. (2007) neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space Neuron, 54, 219-235.

[PDF] Goddard, N., Hucka, M., Howell, F., Cornelis, H., Shankar, K. and Beeman, D. (2001) Towards NeuroML: Model Description Methods for Collaborative Modeling in Neuroscience. Phil. Trans. Royal Society B, 356 (1412), 1209-1228.

Goodman, D.F. and Brette, R. (2008) Brian: a simulator for spiking neural networks in Python. Frontiers in Neuroinformatics, 2:5. doi:10.3389/neuro.11.005.2008.

Graham, B.P., and van Ooyen, A. (2006) Mathematical modelling and numerical simulation of the morphological development of neurons. BMC Neuroscience, 7 (Suppl 1):S9.

Hines, M.L., and Carnevale, N.T. (1997) The NEURON Simulation Environment. Neural Computation, 9 (6), 1179-1209.

[PDF] Hines, M.L., and Carnevale, N.T. (2000) Expanding NEURON's Repertoire of Mechanisms with NMODL. Neural Computation, 12, 839-851.

Grossman, N., Simiaki, V., Martinet, C., Toumazou, C., Schultz, S.R., and Nikolic, K. (2012) The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials. Journal of Computational Neuroscience, doi:10.1007/s10827-012-0431-7.

Hines, M., Davison, A.P. and Muller, E. (2009) NEURON and Python. Frontiers in Neuroinformatics, 3:1. doi:10.3389/neuro.11.001.2009.

[PDF] Hodgkin, A.L., and Huxley, A.F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544.

Izhikevich, E.M. (2004) Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks, 15, 1063-1070.

Jaeger, D. (2005) Realistic Single Cell Modeling - from Experiment to Simulation Brains, Minds, and Media, 1:bmm222 (urn:nbn:de:0009-3-2228).

[PDF] Kotter, R. (2004) Neuroscience databases: tools for exploring brain structure-function relationships. Philos Trans R Soc Lond B Biol Sci, 356(1412), 1111-1120.

Liu, Z., Golowasch, J., Marder, E., and Abbott, L.F. (1998) A Model Neuron with Activity-Dependent Conductances Regulated by Multiple Calcium Sensors. The Journal of Neuroscience, 18(7), 2309-2320.

[PDF] Natschläger, T., Markram, H., and Maass, W. (2002). Computer models and analysis tools for neural microcircuits. In Kötter, R. (Ed.) Neuroscience Databases: A Practical Guide. Norwell, MA: Kluwer Academic Publishers, pp. 121-136.

Nordlie E, Gewaltig M-O, Plesser HE (2009) Towards reproducible descriptions of neuronal network models. PLoS Computational Biology, 5(8):e1000456.

[PDF] Prinz, A.A., Abbott, L.F., and Marder, E. (2004) The Dynamic Clamp Comes of Age. Trends in Neuroscience, 27:218-224.

Prinz, A.A., Billimoria, C.P., and Marder, E. (2003) Alternative to Hand-Tuning Conductance-Based Models: Construction and Analysis of Databases of Model Neurons. Journal of Neurophysiology, 90, 3998-4015.

Ray, S. and Bhalla, U.S. (2008) PyMOOSE: interoperable scripting in Python for MOOSE. Frontiers in Neuroinformatics, 2:6. doi:10.3389/neuro.11.006.2008.

[PS] Stainhauser, D., Wyler, L., Müller, L., Senn, W., Kleinle, J., Larkum, M., Lüscher, H.-R., Streit, J., Vogt, K., and Wannier, T. (1995) An Evaluation Aid for Neural Modeling Software. Technical Report IAM-95-013 Institut für Informatik und angewandte Mathematik, Universitaüt Bern.

Shemer, I., Brinne, B., Tegner, J., Grillner, S. (2008) Electrotonic Signals along Intracellular Membranes May Interconnect Dendritic Spines and Nucleus. PLOS Computational Biology, Mar 28;4(3):e1000036.

Vetter, P., Roth, A., and Hausser, M. (2001) Propagation of Action Potentials in Dendrites Depends on Dendritic Morphology. Journal of Neurophysiology, 85, 926-937.

Full Text Archives

bioRχiv

The preprint server for Biology is operated by Cold Spring Harbor Laboratory.

Quantitative Biology Archive

Lists of Research Publications Using Specific Simulators

GENESIS
NEST
NEURON
PyNN
Topographica

Search for Abstracts

Entrez - PubMed

Access over 12 million citations in the National Library of Medicine's MEDLINE database.

Google Scholar

Google Scholar enables one to search specifically for scholarly literature, including peer-reviewed papers, theses, books, preprints, abstracts and technical reports.

Search for Presentations

NEURON at SfN2010, SfN2011, SfN2012 and SfN2013

Related Abstract Research Tool (RAST)

Includes multiple conferences from 2009 to the present (Neuroscience, Neuroinformatics, SfN). Now including SfN2013. Search abstracts by keywords, and related abstracts based on initial selection. Create a list of abstracts for viewing or printing . Also access through iOS and Android mobile devices.



This page is maintained by Jim Perlewitz ( perlewitz@earthlink.net )
Please send reports of errors, updates, omissions, or suggestions.
Last updated Apr. 8, 2014.

Valid XHTML 1.1 Transitional Valid CSS! Registered with NIF