Problem. Fix an integer $B \geq 2$ and let $s_B(n)$ denote the sum of the digits of an integer n in base B. Prove the infinite product formula

$$\prod_{n=0}^{\infty} \prod_{0 < k < B} \left(\frac{Bn + k}{Bn + k + 1} \right)^{(-1)^{s_B(n)}} = \frac{1}{\sqrt{B}}.$$

Solution. Set

$$\varepsilon(n) = \varepsilon_B(n) = (-1)^{s_B(n)}.$$

Notice that $\varepsilon(2n + 1) = -\varepsilon(2n)$ for all $n \geq 0$. (Proof. If B is odd, clearly $(-1)^{s_B(n)} = (-1)^n$. If B even, and if d_1 is the 1’s digit of $2n$ in base B, then $d_1 < B - 1$, so $s_B(2n + 1) = s_B(2n) + 1$. Hence in both cases $\varepsilon(2n + 1) = -\varepsilon(2n)$.) It follows that the infinite product converges, because we can write it as a product over $n \geq 0$ of factors of the form

$$\left(\frac{B(2n) + k + 1}{B(2n) + k} \cdot \frac{B(2n + 1) + k}{B(2n + 1) + k + 1} \right)^{\pm 1} = \left(1 + \frac{B}{(B(2n) + k)(B(2n + 1) + k + 1)} \right)^{\pm 1}.$$

Note that if $0 \leq k < B$, then $s_B(Bn + k) = s_B(n) + k$, so that

$$\varepsilon(Bn + k) = (-1)^k \varepsilon(n).$$

Now let

$$\delta_k = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise}, \end{cases}$$
and observe that the following product of products telescopes:

\[
\prod_{k=0}^{B-1} \prod_{n=\delta_k}^{\infty} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\epsilon(n)} = \left(\frac{1}{2} \frac{2}{3} \cdots \frac{B-1}{B} \right)^{\epsilon(0)} \prod_{n=1}^{\infty} \left(\frac{Bn}{Bn + 1} \frac{Bn + 1}{Bn + 2} \cdots \frac{Bn + B - 1}{Bn + B} \right)^{\epsilon(n)}
\]

\[
= \frac{1}{B} \prod_{n=1}^{\infty} \left(\frac{n}{n + 1} \right)^{\epsilon(n)}
\]

(1)

If we split the last product, collecting factors with the same index \(n \) modulo \(B \), we obtain another product of products:

\[
\prod_{n=1}^{\infty} \left(\frac{n}{n + 1} \right)^{\epsilon(n)} = \prod_{k=0}^{B-1} \prod_{n=\delta_k}^{\infty} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\epsilon(Bn+k)} = \prod_{k=0}^{B-1} \prod_{n=\delta_k}^{\infty} \left(\frac{Bn + k}{Bn + k + 1} \right)^{(-1)^k \epsilon(n)}
\]

Substituting this into (1), and noting that the infinite products are all nonzero (by virtue of being convergent and having no zero factors), we see that those with even \(k \) cancel, leaving

\[
\prod_{k \text{ odd}} \prod_{n=0}^{\infty} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\epsilon(n)} = \frac{1}{B} \prod_{k \text{ odd}} \prod_{n=0}^{\infty} \left(\frac{Bn + k}{Bn + k + 1} \right)^{-\epsilon(n)}
\]

All the products are positive, and the desired formula follows.

Comment. The case \(B = 2 \) is due to D. R. Woods and D. Robbins; see